Zuletzt aktualisiert
10. Juni 2025
Nutzungsbedingungen
Freie Nutzung. Quellenangabe ist Pflicht.

Beschreibung

Countrywide vegetation height models (VHM) were generated for Switzerland based on Copernicus Sentinel-2 imagery and the digital terrain model (DTM) swissALTI3D from the Swiss Federal Office of Topography swisstopo. A Convolutional Neural Network (CNN) model was trained to estimate the maximum vegetation height at the spatial resolution of the Sentinel-2 pixel of 10 m. Vegetation heights from the spatially higher-resolved VHM Lidar NFI were used as reference data for the CNN training. Within the framework of the Swiss National Forest Inventory (NFI), the VHMs were modelled annually based on available Sentinel-2 imagery from May – September of the respective year. Further details on the creation of the VHM Sentinel NFI can be found in the paper Jiang et al. (2023, https://doi.org/10.1016/j.srs.2023.100099). Contains modified Copernicus Sentinel data.

Ressourcen

Showcases

Zusätzliche Informationen

Identifier
3b1cae17-fc7a-4722-95da-92d3be869273@envidat
Publikationsdatum
15. Mai 2025
Änderungsdatum
10. Juni 2025
Konform mit
-
Publisher
EnviDat
Kontaktstellen
Sprachen
Englisch
Weitere Informationen
-
Landing page
https://www.envidat.ch/#/metadata/vegetation-height-model-sentinel-nfi
Dokumentation
-
Zeitliche Abdeckung
-
Räumliche Abdeckung
-
Aktualisierungsintervall
-
Metadatenzugriff
API (JSON) XML herunterladen