Dernière mise à jour
10 juin 2025
Conditions d'utilisation
Utilisation libre. Obligation d’indiquer la source.

Description

Countrywide vegetation height models (VHM) were generated for Switzerland based on Copernicus Sentinel-2 imagery and the digital terrain model (DTM) swissALTI3D from the Swiss Federal Office of Topography swisstopo. A Convolutional Neural Network (CNN) model was trained to estimate the maximum vegetation height at the spatial resolution of the Sentinel-2 pixel of 10 m. Vegetation heights from the spatially higher-resolved VHM Lidar NFI were used as reference data for the CNN training. Within the framework of the Swiss National Forest Inventory (NFI), the VHMs were modelled annually based on available Sentinel-2 imagery from May – September of the respective year. Further details on the creation of the VHM Sentinel NFI can be found in the paper Jiang et al. (2023, https://doi.org/10.1016/j.srs.2023.100099). Contains modified Copernicus Sentinel data.

Ressources

Showcases

Informations complémentaires

Identifier
3b1cae17-fc7a-4722-95da-92d3be869273@envidat
Date de publication
15 mai 2025
Date de modification
10 juin 2025
Conforme à
-
Editeur
EnviDat
Points de contact
Langues
Anglais
Informations complémentaires
-
Landing page
https://www.envidat.ch/#/metadata/vegetation-height-model-sentinel-nfi
Documentation
-
Couverture temporelle
-
Couverture spatiale
-
Intervalle d'actualisation
-
Accès aux métadonnées
API (JSON) Télécharger XML